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Abstract
The recent outbreak of the COVID-19 pandemic has caused
much loss of life and economic damage over the past year. In
order to help speed up the process of bringing our society back
to a normal state, it is desirable to search for testing methods
that are cheap, reliable and fast. These tests would allow people
to know sooner if they have been infected, allowing these indi-
viduals to access medical care and quarantine faster. Due to the
effectiveness of cough for determining many kinds of diseases,
we explore the ability of audio recordings of cough samples to
inform us about COVID-19 status in this challenge. We ex-
plore the applicability of recent techniques such as autoregres-
sive predictive coding pretraining and spectral augmentation to
improve the performance of a neural cough classification sys-
tem. We use uni-directional long short-term memory (LSTM)
networks for pretraining and bi-diretional LSTM, or BLSTM,
networks for classification.
Index Terms: COVID-19, acoustics, machine learning, respi-
ratory diagnosis, healthcare

1. System Description
1.1. Methodology Overview

Due to the small size of the DiCOVA dataset [1], we choose to
pretrain on the larger COUGHVID dataset [2] in order to train
relevant feature extractors for cough. We then train a classifier
to determine presence of COVID-19 on DiCOVA data using the
features from the lower layers of the pretrained network as in-
put.

1.2. Pre-processing

We first downsample all audio recordings to 16kHz. We then
compute the Mel log spectrogram using a window of 1024 sam-
ples and a hop length of 160 samples (10ms). The spectrograms
are then clipped by setting any components less than or equal to
-120dB to -120dB. Then we normalize the spectrogram such
that the minimum value is 0 (corresponding to -120dB) and the
maximum value is 1 (corresponding to 0dB).

1.3. Feature Description

Pretraining has shown incredible success in natural language
processing with the advent of BERT [3]. Inspired by this suc-
cess, Chung et al. [4] adapt pretraining to audio in a way simi-
lar to BERT. The key similarity to BERT is that the pretraining
is predictive. No external labels are required, but rather struc-
ture is learned by trying to fill in missing parts of the original
signal. Chung et al. explore two types of pretraining (1) Au-
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Figure 1: Autoregressive Predictive Coding

toregressive predictive coding (APC), (2) Contrastive predictive
coding (CPC). The authors find superior performance of APC
over CPC for both phone classification and speaker verification
tasks, so we choose to implement APC.

APC is a simple yet effective form of pretraining for audio.
The objective is for the model to predict a future spectral frame
given previous frames. If the goal is to predict the N ’th future
frame, the error for any audio clip becomes:

E =

T−N∑
n=1

(y[n]− x[n+N ])2 (1)

By forcing the model to predict the future spectral frame, un-
derlying structure of cough is learned. We use a uni-directional
long short-term memory (LSTM) model for pre-training (bi-
directional would break causality). We use 4 LSTM layers with
a hidden size of 400 and a dropout of p = 0.1. Then we use two
linear layers with 500 nodes. We apply the hyperbolic tangent
nonlinearity after the first linear layer. The output dimension
of the model is the same as that of the input since we compute
mean-squared error (MSE) loss. See Figure 1 for a visual de-
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Figure 2: Fine-tuning: We denote frozen layers from pre-
training in blue and trainable layers in green.

scription. We split the 4 LSTM layers into “upper” (purple) and
“lower” (blue) layers because we use the output of the lower
layers as extracted features during fine-tuning, discussed next.

1.4. Classifier Description

We pass the output from the lower layers of the APC model
as input features for our classification network. We use a net-
work composed of 2 bi-directional long short-term memory
(BLSTM) layers followed by three fully-connected layers. The
forward and backward summaries are taken from the BLSTM
layers and concatenated before being fed through the fully-
connected layers. We apply dropout with p = 0.1 in both the
BLSTM and fully-connected layers. To predict the probability
of the cough sample coming from a COVID-19 positive patient,
we take the softmax at the output and use the cross-entropy loss
for training. During training, we apply SpecAugment from Park
et al. [5] to the cough samples. We find that spectral augmen-
tation is critical for generalization to the test data. See Figure 2
for a visualization of the fine-tuning model.

1.4.1. Ensembling

During training we validate with the area-under-curve (AUC)
metric. AUC measures the performance of a classification sys-
tem with imbalanced data better than the accuracy metric. AUC
is the area underneath the true positive rate (TPR) vs. false
positive rate (FPR) curve for different classification thresholds
ranging from zero to one. Since we directly optimize the cross-
entropy loss and not AUC, we find the AUC varies substantially
throughout training. We hypothesize that different sets of model
parameters may classify particular samples better or worse than
one another, and that an ensemble of several high-performing
validation checkpoints may improve test performance. We find
this to be the case, and choose the best three validation check-
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Figure 3: Best config: We plot ROC curves for our best-
performing configuration against the three baselines provided
for the DiCOVA challenge on the validation data. The curves
given are the mean for each approach over five folds.

points and take the mean of their output probabilities for final
validation scores for each fold. For the blind test data, we take
the mean of the scores from each of the five folds. Thus our
test predictions are an average of 5× 3 = 15 model probability
scores.

1.5. Results

Muguli et al. [1] provide three baseline system implementations
for the DiCOVA challenge, described briefly below:

• Linear Regression: Classifier is trained for a maximum
of 25 iterations with liblinear optimizer, regulariza-
tion strength of 0.01 and l2 penalty.

• Multi-layer Perceptron: Classifier is composed of one
layer of 25 hidden units with the tanh nonlinearity ap-
plied to the output. l2 regularization is used with weight
0.001. Examples are sampled during training such that
the model is equally exposed to positive and negative
samples.

• Random Forest: Classifier uses 50 trees and Gini impu-
rity.

A comparison between the three baselines and our proposed
system is given in Figure 3. We notice over 7 percentage points
improvement for our method over the random forest approach,
which is the best-performing baseline method. The improved
performance of our approach over the baseline methods appears
to come from a combination of three factors:

• Improved features: Pretraining on COUGHVID [2] au-
dio samples helps us find features directly tuned for ex-
tracting relevant information from coughing sounds

• Improved capacity: Our classifier contains over 2 million
parameters

• Data augmentation: Creating small variations from the
existing audio clips leads to better generalization

We achieve an AUC of 85.35 on the test data provided in the
DiCOVA challenge. This demonstrates that for the provided
train/val/test split, our approach generalizes well.
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